Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Journal of Indian Academy of Forensic Medicine ; 44(3):78-86, 2022.
Article in English | Scopus | ID: covidwho-2267431

ABSTRACT

The COVID-19 pandemicis the most burning health emergency worldwide now a days and all health professionals are called to give support in the diagnosis, treatment of patients and management of dead bodies affected by this disease. Different modes of transmission of corona virus is well established, however aerosol generating procedure has significant importance for mortuary during autopsy. The risk of infection can be minimized by using standard universal precautions for autopsy dissection procedure, applying high bio-safety levels, using negative pressure and laminar flow system for ventilation, UV irradiation for sterilization, virtual autopsy etc. The aim can be achieved by constructing the mortuary complex in more planned way like area division, ventilation planning, environmental disinfection, individual protection, autopsy procedure, virtual autopsy, preservation and transportation of dead body and waste disposal management. The present manuscript describes in detail about modern mortuary complex during the pandemic era of covid-19 © 2022, Journal of Indian Academy of Forensic Medicine.All Rights Reserved.

2.
Mayo Clin Proc Innov Qual Outcomes ; 7(2): 93-98, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2280745

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has led to considerable morbidity and mortality across the world. Lung transplant is a viable option for a few with COVID-19-related lung disease. Whom and when to transplant has been the major question impacting the transplant community given the novelty of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe a pitfall of presumed prolonged shedding of SARS-CoV-2 in a patient with COVID-19 associated acute respiratory distress syndrome leading to COVID-19 pneumonia after lung transplant. This raises concerns that replication-competent SARS-CoV-2 virus can persist for months post-infection and can lead to re-infection of grafts in the future.

3.
Appl Biosaf ; 27(4): 247-254, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2240303

ABSTRACT

Purpose: The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics. Methods: A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist. Results: By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society. Conclusions: Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.

4.
Neuromethods ; 189:191-220, 2023.
Article in English | EMBASE | ID: covidwho-2059681

ABSTRACT

Viral infectious diseases may cause neurological symptoms primarily in two nonexclusive ways. Infection may lead to an excessive inflammatory response that damages the neuronal system, which is referred to as immunopathology, or the pathogen is able to infect brain cells, such as neurons or nonneuronal glial cells, like oligodendrocytes, microglia, and astrocytes. Viruses that target and infect cells of the CNS, in general, are called neurotropic. 3D brain organoids provide favorable conditions to study target cells and induced pathomechanisms associated with such viral neurotropism. In the context of highly pathogenic viruses, strict safety precautions (safety level-3 laboratory) must be taken if infectious laboratory strains or strains from clinical samples are to be used for infection experiments. Likewise, safe inactivation protocols must be used for subsequent analysis. This chapter will discuss appropriate protocols, focusing on methodological aspects for each of these steps, and discuss advantages and disadvantages when working with 3D brain organoids while handling biosafety level-3 pathogens based on our work with severe acute respiratory virus type 2 (SARS-CoV-2). Copyright © 2023, Springer Science+Business Media, LLC, part of Springer Nature.

5.
Comput Struct Biotechnol J ; 20: 5193-5202, 2022.
Article in English | MEDLINE | ID: covidwho-2004002

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.

6.
Ann Med Surg (Lond) ; 79: 103972, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1894767

ABSTRACT

As of 6 June 2022, a sum 25,782 of active cases and 524,701 deaths due to Coronavirus disease-19 (COVID-19) have been recorded in India. Stewing in the flares of the pandemic, Kerala is entwined in the wrath of multiple emerging infectious diseases. India, a home to 1.3 billion people, recently faced a devastating second wave of COVID-19 during May of 2021, with a ruckus of chronic shortage of medicine, oxygen supplies, ventilators, besides, being challenged by secondary infections and chronic health ailments. The state of Kerala, alone contributes to 50% COVID-19 caseload, besides, recent simultaneous outbreaks of Zika Virus Disease (ZVD), Nipah Virus Disease (NiVD) and Kala-azar (black fever) on July 8, September 5 and 8, 2021 respectively. Syndemicity and a high case fatality rates of these highly contagious diseases coupled with post infection sequelae, overwhelm the already fragile healthcare system. Thus, these lethal infectious diseases along with an anticipated third wave of COVID-19 pose a serious public health threat in and around South India. With this narrative review, we aim to discuss the challenges that the emergence of intersecting outbreaks of Zika, Nipah, Kala-azar presents with, in the nation, amidst the global pandemic of COVID-19 and provide recommendations so as to help alleviate the situation. The syndemicity of COVID-19 with other infectious diseases, calls for adequate surveillance and monitoring of diseases' outbreaks. To avoid the worst situations like pandemic, the health ministry, public and private health stakeholders in India should strengthen the public healthcare delivery system and providence of quick medical facilities to control the rate of mortality and morbidity during outbreaks.

7.
Methods Mol Biol ; 2452: 441-464, 2022.
Article in English | MEDLINE | ID: covidwho-1844279

ABSTRACT

The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents hazards to researchers and other laboratory personnel in research settings where the live virus is stored and handled. The Biosafety Level-3 (BSL-3) Core Facility (CF) at Yong Loo Lin School of Medicine in National University of Singapore (NUS Medicine) has implemented a biorisk management (BRM) system to ensure that biorisk to employees, the public, or the environment are consistently minimized to an acceptable level while working with SARS-CoV-2. This chapter summarizes how a BRM system can be implemented in academic institutions based on international standards in the context of existing local legislations/regulations and institutional policies/guidelines to minimize the risk of laboratory-acquired infections and deliberate misuse of the newly emerged virus, SARS-CoV-2 in BSL-3 laboratories. The BRM programs prioritize performing risk assessments prior to implementation of work processes and reassessing the risk portfolio of the facilities from time to time, determining root causes and prevention of recurrences. Focusing on awareness-raising and educating the laboratory users in biosafety and biosecurity, and identifying opportunities for improvement are the other key factors for a sustainable and successful BRM system in the NUS Medicine BSL-3 CF.


Subject(s)
COVID-19 , SARS-CoV-2 , Containment of Biohazards , Humans , Laboratories , Risk Assessment
8.
Appl Biosaf ; 27(1): 15-22, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1784292

ABSTRACT

Aim: This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents. Methods and Results: The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (Geobacillus stearothermophilus, Bacillus atrophaeus, and Bacillus thuringiensis) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (Bacillus anthracis; SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (Yersinia pestis, Burkholderia mallei, Brucella melitensis, and Francisella tularensis) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials. Conclusions: The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log10 for the spores (surrogates and B. anthracis), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.

9.
Vet Pathol ; 59(4): 556-564, 2022 07.
Article in English | MEDLINE | ID: covidwho-1785003

ABSTRACT

The COVID-19 pandemic has highlighted the critical role that animal models play in elucidating the pathogenesis of emerging diseases and rapidly analyzing potential medical countermeasures. Relevant pathologic outcomes are paramount in evaluating preclinical models and therapeutic outcomes and require careful advance planning. While there are numerous guidelines for attaining high-quality pathology specimens in routine animal studies, preclinical studies using coronaviruses are often conducted under biosafety level-3 (BSL3) conditions, which pose unique challenges and technical limitations. In such settings, rather than foregoing pathologic outcomes because of the inherent constraints of high-containment laboratory protocols, modifications can be made to conventional best practices of specimen collection. Particularly for those unfamiliar with working in a high-containment laboratory, the authors describe the logistics of conducting such work, focusing on animal experiments in BSL3 conditions. To promote scientific rigor and reproducibility and maximize the value of animal use, the authors provide specific points to be considered before, during, and following a high-containment animal study. The authors provide procedural modifications for attaining good quality pathologic assessment of the mouse lung, central nervous system, and blood specimens under high-containment conditions while being conscientious to maximize animal use for other concurrent assays.


Subject(s)
COVID-19 , Containment of Biohazards , Laboratories , Specimen Handling , Animals , COVID-19/veterinary , Containment of Biohazards/standards , Laboratories/organization & administration , Mice , Reproducibility of Results , SARS-CoV-2 , Specimen Handling/methods , Specimen Handling/veterinary
10.
One Health ; 13: 100325, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1442510

ABSTRACT

OBJECTIVES: One Health is transiting from multidisciplinary to transdisciplinary concepts and its viewpoints should move from 'proxy for zoonoses', to include other topics (climate change, nutrition and food safety, policy and planning, welfare and well-being, antimicrobial resistance (AMR), vector-borne diseases, toxicosis and pesticides issues) and thematic fields (social sciences, geography and economics). This work was conducted to map the One Health landscape in Africa. METHODS: An assessment of existing One Health initiatives in Sub-Saharan African (SSA) countries was conducted among selected stakeholders using a multi-method approach. Strengths, weaknesses, opportunities and threats to One Health initiatives were identified, and their influence, interest and impacts were semi-quantitatively evaluated using literature reviews, questionnaire survey and statistical analysis. RESULTS: One Health Networks and identified initiatives were spatiotemporally spread across SSA and identified stakeholders were classified into four quadrants. It was observed that imbalance in stakeholders' representations led to hesitation in buying-in into One Health approach by stakeholders who are outside the main networks like stakeholders from the policy, budgeting, geography and sometimes, the environment sectors. CONCLUSION: Inclusion of theory of change, monitoring and evaluation frameworks, and tools for standardized evaluation of One Health policies are needed for a sustained future of One Health and future engagements should be outputs- and outcomes-driven and not activity-driven. National roadmaps for One Health implementation and institutionalization are necessary, and proofs of concepts in One Health should be validated and scaled-up. Dependence on external funding is unsustainable and must be addressed in the medium to long-term. Necessary policy and legal instruments to support One Health nationally and sub-nationally should be implemented taking cognizance of contemporary issues like urbanization, endemic poverty and other emerging issues. The utilization of current technologies and One Health approach in addressing the ongoing pandemic of COVID-19 and other emerging diseases are desirable. Finally, One Health implementation should be anticipatory and preemptive, and not reactive in containing disease outbreaks, especially those from the animal sources or the environment before the risk of spillover to human.

11.
Front Bioeng Biotechnol ; 9: 720315, 2021.
Article in English | MEDLINE | ID: covidwho-1394749

ABSTRACT

High containment biological laboratories (HCBL) are required for work on Risk Group 3 and 4 agents across the spectrum of basic, applied, and translational research. These laboratories include biosafety level (BSL)-3, BSL-4, animal BSL (ABSL)-3, BSL-3-Ag (agriculture livestock), and ABSL-4 laboratories. While SARS-CoV-2 is classified as a Risk Group 3 biological agent, routine diagnostic can be handled at BSL-2. Scenarios involving virus culture, potential exposure to aerosols, divergent high transmissible variants, and zoonosis from laboratory animals require higher BSL-3 measures. Establishing HCBLs especially those at BSL-4 is costly and needs continual investments of resources and funding to sustain labor, equipment, infrastructure, certifications, and operational needs. There are now over 50 BSL-4 laboratories and numerous BSL-3 laboratories worldwide. Besides technical and funding challenges, there are biosecurity and dual-use risks, and local community issues to contend with in order to sustain operations. Here, we describe case histories for distinct HCBLs: representative national centers for diagnostic and reference, nonprofit organizations. Case histories describe capabilities and assess activities during COVID-19 and include capacities, gaps, successes, and summary of lessons learned for future practice.

12.
HardwareX ; 8: e00144, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-816865

ABSTRACT

The supply of Personal Protective Equipment (PPE) in hospitals to keep the Health Care Professionals (HCP) safe taking care of patients may be limited, especially during the outbreak of a new disease. In particular, the face and body protective equipment is critical to prevent the wearer from exposure to pathogenic biological airborne particulates. This situation has been now observed worldwide during the onset of the COVID-19 pandemic. As concern over shortages of PPE at hospitals grows, we share with the public and makers' community the Pressure Optimized PowEred Respirator (PROPER) equipment, made out of COTS components. It is functionally equivalent to a Powered Air Purifying Respirator (PAPR). PROPER, a hood-based system which uses open source and easily accessible components is low-cost, relatively passive in terms of energy consumption and mechanisms, and easy and fast to 3D print, build and assemble. We have adapted our experience on building clean room environments and qualifying the bioburden of space instruments to this solution, which is in essence a miniaturized, personal, wearable cleanroom. PROPER would be able to offer better protection than an N95 respirator mask, mainly because it is insensitive to seal fit and it shields the eyes as well. The PROPER SMS fabric is designed for single-use and not intended for reuse, as they may start to tear and fail but the rest of the parts can be disinfected and reused. We provide a set of guidelines to build a low-cost 3D printed solution for an effective PAPR system and describe the procedures to validate it to comply with the biosafety level 3 requirements. We have validated the prototype of PROPER unit for air flow, ISO class cleanliness level, oxygen and carbon-dioxide gas concentrations during exhalation, and present here these results for illustration. We demonstrate that the area inside the hood is more than 200 times cleaner than the external ambient without the operator and more than 175 times with the operator and in an aerosol exposed environment. We also include the procedure to clean and disinfect the equipment for reuse. PROPER may be a useful addition to provide protection to HCPs against the SARS-CoV-2 virus or other potential future viral diseases that are transmitted aerially.

13.
Appl Biosaf ; 25(3): 132-133, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-671826
14.
Virus Genes ; 56(2): 150-167, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1327

ABSTRACT

The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.


Subject(s)
Antiviral Agents/therapeutic use , Arboviruses/drug effects , Bioterrorism/prevention & control , Virus Diseases/drug therapy , Arboviruses/pathogenicity , Filoviridae/drug effects , Filoviridae/pathogenicity , Humans , Orthobunyavirus/drug effects , Orthobunyavirus/pathogenicity , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Paramyxovirinae/drug effects , Paramyxovirinae/pathogenicity , Poxviridae/drug effects , Poxviridae/pathogenicity , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL